
An Open Stack for Open Data
Branson Fox – Lead Data Engineer, St. Louis Regional Data Alliance

About the Regional Data Alliance (RDA)

• Housed at the Community Innovation and Action Center of the
University of Missouri, St. Louis
• Convening Data Partners in the Region from:
• Government
• Non-Profits
• Community Organizations
• Healthcare Institutions

• Goal of Making data more accessible to everyone

General Technical Challenges

• Aggregating and Combining Data from a Variety of Sources
• A Robust ETL Process
• Rigorous Error Handling
• Infinite Room for Expansion

• Storing and Retrieving these Data in a Scalable Manner
• Well Defined Schemas
• Stateless, Scalable APIs

• Presentation and Accessibility of Data to All Types of Stakeholders
• APIs for Developers
• Dashboards for Specific Topics
• Common Data Extracts for Everyone

Goals of the Stack

• Open
• 100% Open Source
• All Code Hosted In Public Git Repositories (github.com/stlrda)

• Agile
• Full Continuous Deployment (5 Minutes from Push to Production)
• Intuitive Tools for Collaboration

• Simple
• Less (Code) is More
• Modern Languages/Frameworks
• Bug Squashing and Security Advantage

• Fast/Lightweight/Scalable/Portable
• Affordable

• Don’t Spend more $$ Than You Have To

Behind the Stack

• Languages:
• Python (Airflow, FastAPI)
• SQL (Postgres, +Airflow, +FastAPI)
• Javascript (React, Vanilla)
• Docker (Compose)
• Git (GitHub)

• Tools
• Airflow for ETL Jobs
• FastAPI for REST APIs
• Javascript/React for Client Apps

Behind the Stack

• Language shouldn’t (doesn’t) matter.
• R ETL Process for Crime Data
• R Shiny Crime Dashboard
• Node ETL Process for Vacancy Data

• The Stuff You Don’t Deploy
• Project Management via GitHub Kanban Boards, Wikis
• Diagramming, Planning in Miro
• Front-End Mockups in Figma
• Slack for Communication

The Stack

• AWS – EC2 VMs, S3 Buckets, RDS Databases, Route53 Domains
• Nothing complicated, No Vendor Lock-In

• Everything is a container.
• Airflow for ETL
• FastAPI for REST APIs
• React Apps in Front
• Caddy to Route, Proxy and Secure all Deployments

Airflow

• From airbnb to the Apache Foundation, Written in Python
• “Cron on Steroids”
• Define DAGs entirely in Python, or even SQL or Docker
• Vertically Scalable with Parallel Execution, Horizontally Scalable with

Celery or Kubernetes
• Robust Error Notification, Accessible Logs
• Web-Based Secure UI

FastAPI

• The Latest Contender in Python REST API Frameworks
• Faster Than Django, Flask

• Supports Asynchronous Request Handling
• Async Python Functions AND Async SQL Queries

• Automatic Documentation with Both ReDoc and Swagger
• Full Compliance with OpenApi Specification (OpenAPI.json)
• We plan to build the data commons as an extension of this schema

• Ridiculously Easy Queries, Type Checking, and Data Structuring
• Seriously, we’ve written APIs in minutes

Continuous Deployment with
GitHub Actions + Docker

• GitHub Actions builds Docker Images on Push to Any Branch
• Images Stored in GitHub’s Image Repository
• Server-side Docker-Compose includes the watchtower service, checks

for updates to the image on the remote repository, and seamlessly
updates deployment
• With appropriately sized image builds, we consistently achieve 3-5

minutes push to production.
• 100% Free Since our Repos are Public

Caddy

• A Modern Webserver, Written in Go
• The Easiest TLS Certificate Management Ever
• Concise Config Files
• Do in 10 Lines what nginx or apache do in 100

• Used as a reverse proxy and static file server
• Option to use as a robust load balancer
• If you need higher throughput/more security:
• consider Bunkerized-Nginx

React

• From Facebook, React is the de-facto front-end framework these days
• Every app is its own container.
• Same Build/Deploy Process
• Quick Changes to Individual Apps
• Independent Scalability for Each App

Case Study 1: Crime Data

• Saint Louis Metropolitan Police Department Puts out Monthly Crime
Reports, but they are messy
• Chris Prener at SLU writes a function in the Compstatr R package to

scrape and reconcile data
• While at the Institute for Public Health at WUSTL, I Docker-ize this

scraper, build an API with R Plumber, and build a dashboard using R
Shiny
• Fast forward a year, how do I integrate this to the new infrastructure?

Case Study 1: Crime Data

• Airflow Supports Execution of a Docker Container – Moved the scraper
Docker service to an Airflow DAG
• Data migrates from a file on disk (ouch) to a small Postgres Instance
• Re-write API in FastAPI within an evening, Dockerize and Deploy
• Proxy Dockerized Shiny App with Caddy at apps.stldata.org
• Redirect Old Sub-Domain to new URL

apps.stldata.org/crime

Case Study 2: Regional Data Exchange

• Regional Data is Fragmented
• Each County has their own portal, labeling of data
• We aggregate data from several local counties and organizations, and

label it in a predictable, standardized way
• We release these aggregated data with an instance of DKAN

rdx.stldata.org

Case Study 3: Vacancy Data

• The City of St. Louis Doesn’t Know How Many Properties are Vacant
• In 2017, a methodology and dataset are created to define likely

Vacancy. It has some limitations and isn’t updated
• Between 2018-2020 Jon Leek makes progress on the Regional-Entity

Database (RedB)
• In Q4 2020, Walker Hamilton creates a city API for aggregated parcel

data
• So how do we get to a monthly updated dataset of vacancy in the City

of St. Louis?

Case Study 3: Vacancy Data

• RedB Completed Q3 2020 – Weekly Airflow DAGs Extract Parcel Data
from MS Access Databases (Dump with mdbtools, store in S3,
integrate with SQL scripts)
• Q4 2020 – City Parcel API is Scraped Monthly via Airflow
• Q4 2020 – Dave Menninger and Cam Barnes writing a Node Process to

generate Vacancy likeliness from Parcel Data
• Q1 2021 – Node Process Dockerized and Integrated to Airflow
• Monthly Vacancy Dataset Generated

Coming Q1 2020

So What’s Next?

• Q1 2021 – Anticipated Release of Data Commons
• Using the OpenAPI Specification, create Query-able Tables and Basic

Visualization within the browser (Swagger with better UX)

• 2021 – Community Information Exchange (CIE)
• Connection of Community Resources and Service Organization

• 2020 – Beyond
• Public Health Infrastructure (COVID, STI’s, Crime & Violence)
• Seeking Big Ideas – What does the region need to overcome its data

challenges? What do you as a user of data want to see?

Reach out!

You have cool data ideas, want to add some
commits to your GitHub profile, or just want to
talk tech:

bransonfox@umsl.edu

